





### CHAPTER 4: ROUTING DYNAMIC LANJUTAN

Routing & Switching





- 4.1 Dynamic Routing Protocols
- 4.2 Distance Vector Dynamic Routing
- 4.3 RIP and RIPng Routing
- 4.4 Link-State Dynamic Routing
- 4.5 The Routing Table
- 4.6 Summary





**Routing Protocols Classification** 





#### DYNAMIC ROUTING PROTOCOL OPERATION THE EVOLUTION OF DYNAMIC ROUTING PROTOCOLS

- Dynamic routing protocols used in networks since the late 1980s
- Newer versions support the communication based on IPv6

#### **Routing Protocols Classification**

|      | Interior Gate   | way Protocol      | Exterior Gateway<br>Protocols |                   |             |
|------|-----------------|-------------------|-------------------------------|-------------------|-------------|
|      | Distance Vector |                   | Link-State                    |                   | Path Vector |
| IPv4 | RIPv2           | EIGRP             | OSPFv2                        | IS-IS             | BGP-4       |
| IPv6 | RIPng           | EIGRP for<br>IPv6 | OSPFv3                        | IS-IS for<br>IPv6 | BGP-MP      |



#### TYPES OF ROUTING PROTOCOLS DISTANCE VECTOR OR LINK-STATE ROUTING PROTOCOLS

Distance vector protocols use routers as sign posts along the path to the final destination.

A link-state routing protocol is like having a complete map of the network topology. The sign posts along the way from source to destination are not necessary, because all link-state routers are using an identical map of the network. A link-state router uses the link-state information to create a topology map and to select the best path to all destination networks in the topology.



# TYPES OF ROUTING PROTOCOLS

Link-State Protocol Operation



Link-state protocols forward updates when the state of a link changes.



#### TYPES OF ROUTING PROTOCOLS CLASSFUL ROUTING PROTOCOLS

Classful routing protocols do not send subnet mask information in their routing updates:

- Only RIPv1 and IGRP are classful.
- Created when network addresses were allocated based on classes (class A, B, or C).
- Cannot provide variable length subnet masks (VLSMs) and classless interdomain routing (CIDR).
- Create problems in discontiguous networks.



#### TYPES OF ROUTING PROTOCOLS CLASSLESS ROUTING PROTOCOLS

Classless routing protocols include subnet mask information in the routing updates:

- RIPv2, EIGRP, OSPF, and IS\_IS
- Support VLSM and CIDR
- IPv6 routing protocols



#### TYPES OF ROUTING PROTOCOLS ROUTING PROTOCOL CHARACTERISTICS

|                                     | Distance | Vector | Link State |         |         |         |
|-------------------------------------|----------|--------|------------|---------|---------|---------|
|                                     | RIPv1    | RIPv2  | IGRP       | EIGRP   | OSPF    | IS-IS   |
| Speed<br>Convergence                | Slow     | Slow   | Slow       | Fast    | Fast    | Fast    |
| Scalability -<br>Size of<br>Network | Small    | Small  | Small      | Large   | Large   | Large   |
| Use of VLSM                         | No       | Yes    | No         | Yes     | Yes     | Yes     |
| Resource<br>Usage                   | Low      | Low    | Low        | Medium  | High    | High    |
| Implemenation<br>and<br>Maintenance | Simple   | Simple | Simple     | Complex | Complex | Complex |



#### TYPES OF ROUTING PROTOCOLS ROUTING PROTOCOL METRICS

A metric is a measurable value that is assigned by the routing protocol to different routes based on the usefulness of that route:

- Used to determine the overall "cost" of a path from source to destination.
- Routing protocols determine the best path based on the route with the lowest cost.



## TABEL NILAI DEFAULT ADMINISTRATIVE DISTANCE (AD) PADA ROUTER CISCO

| Route Source                                                     | Default Distance Values |  |  |
|------------------------------------------------------------------|-------------------------|--|--|
| Connected interface                                              | 0                       |  |  |
| Static route                                                     | 1                       |  |  |
| Enhanced Interior Gateway Routing Protocol (EIGRP) summary route | 5                       |  |  |
| External Border Gateway Protocol (BGP)                           | 20                      |  |  |
| Internal EIGRP                                                   | 90                      |  |  |
| IGRP                                                             | 100                     |  |  |
| OSPF                                                             | 110                     |  |  |
| Intermediate System-to-Intermediate System (IS-IS)               | 115                     |  |  |
| Routing Information Protocol (RIP)                               | 120                     |  |  |
| Exterior Gateway Protocol (EGP)                                  | 140                     |  |  |
| On Demand Routing (ODR)                                          | 160                     |  |  |
| External EIGRP                                                   | 170                     |  |  |
| Internal BGP                                                     | 200                     |  |  |
| Unknown*                                                         | 255                     |  |  |



School of Industrial and System Engineering

## A Link-State Routing Algorithm

### Dijkstra's algorithm

- net topology, link costs known to all nodes
  - accomplished via "link state broadcast"
  - all nodes have same info
- computes least cost paths from one node ('source'') to all other nodes
  - gives forwarding table for that node
- iterative: after k iterations, know least cost path to k dest.'s

### Notation:

- C(x,y): link cost from node
  x to y; = ∞ if not direct
  neighbors
- D(v): current value of cost of path from source to dest. v
- p(v): predecessor node along path from source to v
- N': set of nodes whose least cost path definitively known





DIJKSTRA'S ALGORITHM: EXAMPLE







#### Resulting shortest-path tree from u:



 $\begin{array}{c|c} \hline \textbf{Resulting forwarding table in u:} \\ \hline \textbf{destination} & \textbf{link} \\ \hline \textbf{v} & (\textbf{u}, \textbf{v}) \\ \textbf{x} & (\textbf{u}, \textbf{x}) \\ \textbf{x} & (\textbf{u}, \textbf{x}) \\ \textbf{y} & (\textbf{u}, \textbf{x}) \\ \textbf{w} & (\textbf{u}, \textbf{x}) \\ \textbf{z} & (\textbf{u}, \textbf{x}) \end{array}$ 



# LINK-STATE ROUTING PROTOCOL OPERATION DIJKSTRA'S ALGORITHM

Dijkstra's Shortest Path First Algorithm

Shortest Path for host on R2 LAN to reach host on R3 LAN: R2 to R1 (20) + R1 to R3 (5) + R3 to LAN (2) = 27





# LINK-STATE UPDATES

#### Link-State Routing Process

- Each router learns about each of its own directly connected networks.
- Each router is responsible for "saying hello" to its neighbors on directly connected networks.
- Each router builds a Link State Packet (LSP) containing the state of each directly connected link.
- Each router floods the LSP to all neighbors who then store all LSP's received in a database.
- Each router uses the database to construct a complete map of the topology and computers the best path to each destination networks.



#### The first step in the link-state routing process is that each router learns about its own links and its own directly connected networks.

Link-State of Interface Fa0/0



#### Link 1

- Network: 10.1.0.0/16
- IP address: 10.1.0.1
- Type of network: Ethernet
- Cost of that link: 2
- Neighbors: None

Link-State of Interface S0/0/0



#### Link 2

- Network: 10.2.0.0/16
- IP address: 10.2.0.1
- Type of network: Serial
- Cost of that link: 20
- Neighbors: R2



# WHY USE LINK-STATE ROUTING PROTOCOLS WHY USE LINK-STATE PROTOCOLS?

#### Disadvantages of Link-State Routing Protocols

- Maintaining a link-state database and SPF tree requires additional memory.
- Calculating the SPF algorithm also requires additional CPU processing.
- Bandwidth can be adversely affected by link-state packet flooding.





### **TERIMA KASIH**



#### Thank you very much for your kind attention