

CHAPTER 6: OSPF OPEN SHORTEST PATH FIRST

Routing & Switching

6.1 Characteristics of OSPF6.2 Configuring Single-area OSPFv26.3 Configure Single-area OSPFv3

CHAPTER 6: TUJUAN

After completing this chapter, you will be able to:

- Explain the process by which link-state routers learn about other networks.
- Describe the types of packets used by Cisco IOS routers to establish and maintain an OSPF network.
- Explain how Cisco IOS routers achieve convergence in an OSPF network.
- Configure an OSPF router ID.
- Configure single-area OSPFv2 in a small, routed IPv4 network.
- Explain how OSPF uses cost to determine best path.
- Verify single-area OSPFv2 in a small, routed network.
- Compare the characteristics and operations of OSPFv2 to OSPFv3.
- Configure single-area OSPFv3 in a small, routed network.
- Verify single-area OSPFv3 in a small, routed network.

Interior Gateway Protocols

FEATURES DARIOSPF

OVERVIEW OSPF

- Merupakan routing protocol open standar yang diimplementasikan oleh berbagai macam vendor, termasuk cisco
- Link state algoritma \rightarrow Dijkstra
- Hop count unlimited
- Metrik : bandwidth
- Mendukung VLSM dan CIDR
- Terdapat konsep area untuk memudahkan manajemen dan control traffic
- Menyediakan desain hierarki dengan multiple area

OVERVIEW OSPF

- Dari scalabilitas lebih baik dari RIP dan IGRP
- Mendukung autentikasi
- Konvergensi cepat

OSFP MEMILIKI TIGA TABEL

- Neighbor table
 - Dikenal juga sebagai adjacency database
 - Memiliki informasi directly connected router
 - Command : show ip ospf neighbor
- Database table
 - Disebut juga sebagai LSDB (Link state database)
 - Menampilkan semua kemungkinan informasi route menuju network dalam satu area
 - Command : show ip ospf database
- Routing table
 - Menampilkan best route menuju network tujuan
 - Command : show ip route

KEUNTUNGAN OSFP

- Open standar
- Tidak ada batasan jumlah hop
- Loop free
- Konvergensi lebih cepat

KERUGIAN OSFP

- Mengkonsumsi lebih banyak resource CPU
- Kompleks dalam hal desain dan implementasi
- Hanya mendukung protocol ip

PERINTAH

- Router (config) # router ospf <process id>
- Router (config-router) # network <network id> <wildcard-mask> area <area-id>
- Router (config-router) # network <network id> <wildcard-mask> area <area-id>

KONFIGURASI

TABEL ADDRESSING

Interface IP Address		Subnet Mask	Default Gateway	
Fa0/0	192.168.1.254	255.255.255.0	N/A	
Fa0/1	12.12.12.1	255.255.255.0	N/A	
Lo1	172.16.1.1	255.255.255.0	N/A	
Lo2	172.16.2.2	255.255.255.0	N/A	
Fa0/0	192.168.2.254	255.255.255.0	N/A	
Fa0/1	12.12.12.2	255.255.255.0	N/A	
Lo3	172.16.3.3	255.255.255.0	N/A	
Lo4	172.16.4.4	255.255.255.0	N/A	
51 N/A VLAN 1		N/A	N/A	
N/A	VLAN 1	N/A	N/A	
Laptop 1 NIC 192.168.1.1		255.255.255.0	192.168.1.254	
Laptop 2 NIC 192.168.2.1		255.255.255.0	192.168.2.254	
	Interface Fa0/0 Fa0/1 Lo1 Lo2 Fa0/0 Fa0/1 Lo3 Lo4 N/A N/A N/A NIC NIC	InterfaceIP AddressFa0/0192.168.1.254Fa0/112.12.12.1Lo1172.16.1.1Lo2172.16.2.2Fa0/0192.168.2.254Fa0/112.12.12.2Lo3172.16.3.3Lo4172.16.4.4N/AVLAN 1N/AVLAN 1NIC192.168.1.1NIC192.168.2.1	InterfaceIP AddressSubnet MaskFa0/0192.168.1.254255.255.0Fa0/112.12.12.1255.255.0Lo1172.16.1.1255.255.0Lo2172.16.2.2255.255.0Fa0/0192.168.2.254255.255.0Fa0/112.12.12.2255.255.0Lo3172.16.3.3255.255.0Lo4172.16.4.4255.255.0N/AVLAN 1N/AN/AVLAN 1N/ANIC192.168.1.1255.255.0NIC192.168.2.1255.255.0	

OSPF Data Structures

Database	Table	Description
Adjacency Database	Neighbor Table	 List of all neighbor routers to which a router has established bidirectional communication. This table is unique for each router. Can be viewed using the show ip ospf neighbor command.
Link-state Database (LSDB)	Topology Table	 Lists information about all other routers in the network. The database shows the network topology. All routers within an area have identical LSDB. Can be viewed using the show ip ospf database command.
Forwarding Database	Routing Table	 List of routes generated when an algorithm is run on the link-state database. Each router's routing table is unique and contains information on how and where to send packets to other routers. Can be viewed using the show ip route command.

COMPONENTS OF OSPF (CONT.)

OSPF Routers Exchange Packets - These packets are used to discover neighboring routers and also to exchange routing information to maintain accurate information about the network.

Routers Exchange Hello Packets

If a neighbor is present, the OSPF-enabled router attempts to establish a neighbor adjacency with that neighbor

Telkom University OPEN SHORTEST PATH FIRST LINK-STATE OPERATION (CONT.)

- LSAs contain the state and cost of each directly connected link.
- Routers flood their LSAs to adjacent neighbors.
- Adjacent neighbors receiving the LSA immediately flood the LSA to other directly connected neighbors, until all routers in the area have all LSAs.

- Build the topology table based on the received LSAs.
- This database eventually holds all the information about the topology of the network.
- Execute the SPF Algorithm.

Telkom University OPEN SHORTEST PATH FIRST LINK-STATE OPERATION (CONT.)

Content of the R1 SPF Tree

Destination	Shortest Path	Cost
10.5.0.0/16	$R1 \rightarrow R2$	22
10.6.0.0/16	$R1 \rightarrow R3$	7
10.7.0.0/16	$R1 \rightarrow R3$	15
10.8.0.0/16	$\rm R1 \rightarrow R3 \rightarrow R4$	17
10.9.0.0/16	$R1 \rightarrow R2$	30
10.10.0.0/16	$R1 \rightarrow R3 \rightarrow R4$	25
10.11.0.0/16	$R1 \rightarrow R3 \rightarrow R4 \rightarrow R5$	27

From the SPF tree, the best paths are inserted into the routing table.

SINGLE-AREA AND MULTIAREA OSPF

Single-Area OSPF

- Implemented using a two-layer area hierarchy as all areas must connect to the backbone area (area 0).
- Interconnecting routers are called Area Border Routers (ABR).
- Useful in larger network deployments to reduce processing and memory overhead.

SINGLE-AREA AND MULTIAREA OSPF (CONT.)

Link Change Impacts Local Area Only

- Link failure affects the local area only (area 51).
- The ABR (R2) isolates the fault to area 51 only.
- Routers in areas 0 and 1 do not need the run the SPF algorithm.

School of Industrial and System Engineering

OSPF IPv4 Header Fields

Data Link Frame	IP Packet Header	OSPF Packet	OSPF Packet Type-
Header		Header	Specific Database

Data Link Frame (Ethernet Fields shown here)

MAC Destination Address = Multicast: 01-00-5E-00-00-05 or 01-00-5E-00-00-06 MAC Source Address = Address of sending interface

IP Packet

IP Source Address = Address of sending interface IP Destination Address = Multicast: 224.0.0.5 or 224.0.0.6 Protocol field = 89 for OSPF

> **OSPF** Packet Header Type code for OSPF Packet type

Router ID and Area Id

OSPF Packet types

0x01 Hello 0x02 Database Description (DD) 0X03 Link State Request 0X04 Link State Update 0X05 Link State Acknowledgment

OSPF Packet Descriptions

Туре	Packet Name	Description
1	Hello	Discovers neighbors and builds adjacencies between them
2	Database Description (DBD)	Checks for database synchronization between routers
3	Link-State Request (LSR)	Requests specific link-state records from router to router
4	Link-State Update (LSU)	Sends specifically requested link- state records
5	Link-State Acknowledgment (LSAck)	Acknowledges the other packet types

OSPF Type 1 packet = Hello packet:

- Discover OSPF neighbors and establish neighbor adjacencies.
- Advertise parameters on which two routers must agree to become neighbors.
- Elect the Designated Router (DR) and Backup Designated Router (BDR) on multiaccess networks like Ethernet and Frame Relay.

OSPF Hello Packet Content

OSPF Hello packets are transmitted:

- To 224.0.0.5 in IPv4 and FF02::5 in IPv6 (all OSPF routers)
- Every 10 seconds (default on multiaccess and point-topoint networks)
- Every 30 seconds (default on non-broadcast multiaccess [NBMA] networks)
- Dead interval is the period that the router waits to receive a Hello packet before declaring the neighbor down
- Router floods the LSDB with information about down neighbors out all OSPF enabled interfaces
- Cisco's default is 4 times the Hello interval

LSUs Contain LSAs

Туре	Packet Name	Description
1	Hello	Discovers neighbors and builds adjacencies between them
2	DBD	Checks for database synchronization between router
3	LSR	Requests specific link-state records from router to router
4	LSU	Sends specifically requested link-state records
5	LSAck	Acknowledges the other packet types

- An LSU contains one or more LSAs.
- LSAs contain route information for destination networks.

LSA Type	Description
1	Router LSAs
2	Network LSAs
3 or 4	Summary LSAs
5	Autonomous System External LSAs
6	Multicast OSPF LSAs
7	Defined for Not-So-Stubby Areas
8	External Attributes LSA for Border Gateway Protocol (BGP)
9,10,11	Opaque LSAs

University OSPF OPERATION OSPF OPERATION

When an OSPF router is initially connected to a network, it attempts to:

- Create adjacencies with neighbors
- Exchange routing information
- Calculate the best routes
- Reach convergence
- OSPF progresses through several states while attempting to reach convergence.

ESTABLISH NEIGHBOR ADJACENCIES (CONT.)

DR and BDR election only occurs on multi-access networks such as Ethernet LANs.

Creating Adjacencies With Every Neighbor

Example:5 routers (5-1)/2=10 adjacencies

Decide Which Router Sends the First DBD

SYNCHRONIZING OSPF DATABASE (CONT.)

Exchange DBD Packets

Control Control Contr

Entering Router OSPF Configuration Mode on R1

R1(config)# router ospf	10
R1(config-router)# ?	
Router configuration com	mands:
auto-cost	Calculate OSPF interface cost
	according to bandwidth
network	Enable routing on an IP network
no	Negate a command or set its defaults
passive-interface	Suppress routing updates on an
	interface
priority	OSPF topology priority
router-id	router-id for this OSPF process

Note: Output has been altered to display only the commands that will be used in this chapter.

Telkom University OSPF ROUTER ID

Router ID Order of Precedence

*Mar 25 19:46:22.423: %OSPF-5-ADJCHG: Process 10, Nbr 2.2.2.2 on Serial0/0/0 from FULL to DOWN, Neighbor Down: Interface down or detached

Telkom School of Industrial and System Engineering THE NETWORK COMMAND

Assigning Interfaces to an OSPF Area

```
R1(config)# router ospf 10
R1(config-router)# network 172.16.1.0 0.0.0.255 area 0
R1(config-router)# network 172.16.3.0 0.0.0.3 area 0
R1(config-router)# network 192.168.10.4 0.0.0.3 area 0
R1(config-router)#
R1#
```

Assigning Interfaces to an OSPF Area with a Quad Zero

```
R1(config)# router ospf 10
R1(config-router)# network 172.16.1.1 0.0.0.0 area 0
R1(config-router)# network 172.16.3.1 0.0.0.0 area 0
R1(config-router)# network 192.168.10.5 0.0.0.0 area 0
R1(config-router)#
R1#
```


- By default, OSPF messages are forwarded out all OSPFenabled interfaces. However, these messages really only need to be sent out interfaces connecting to other OSPFenabled routers.
- Sending out unneeded messages on a LAN affects the network in three ways:
 - Inefficient Use of Bandwidth
 - Inefficient Use of Resources
 - Increased Security Risk
- The Passive Interface feature helps limiting the scope of routing updates advertisements.

Configuring a Passive Interface on R1

```
R1(config)# router ospf 10
R1(config-router)# passive-interface GigabitEthernet 0/0
R1(config-router)# end
R1#
```

Use the **passive-interface** router

configuration mode command to prevent the transmission of routing messages through a router interface, but still allow that network to be advertised to other routers.

OSPF METRIC = COST

Cost = <u>reference bandwidth</u> / <u>interface bandwidth</u> (default reference bandwidth is 10^8) Cost = <u>100,000,000 bps</u> / <u>interface bandwidth in bps</u>

Default Cisco OSPF Cost Values

Interface Type	Reference Bandwidth in I	bps	Default Bandwidth in bps	Cost	
Gigabit Ethernet 10 Gbps	100,000,000	÷	10,000,000,000	1	
Gigabit Ethernet 1 Gbps	100,000,000	÷	1,000,000,000	1	due to reference bandwid
Fast Ethernet 100 Mbps	100,000,000	÷	100,000,000	1	J
Ethernet 10 Mbps	100,000,000	÷	10,000,000	10	
Serial 1.544 Mbps	100,000,000	÷	1,544,000	64	
Serial 128 kbps	100,000,000	÷	128,000	781	
Serial 64 kbps	100,000,000	÷	64,000	1562	

School of Industrial and System Engineering

OSPF COST

OSPF ACCUMULATES COSTS

Cost of an OSPF route is the accumulated value from one router to the destination network.

ADJUSTING THE REFERENCE BANDWIDTH

- Use the command auto-cost reference-bandwidth
- Must be configured on every router in the OSPF domain
- Notice that the value is expressed in Mb/s:
 - Gigabit Ethernet auto-cost reference-bandwidth 1000
 - I0 Gigabit Ethernet auto-cost reference-bandwidth 10000

Verifying the S0/0/0 Link Cost

R1 [‡] show ip ospf interface serial 0/0/0	
Serial0/0/0 is up. line protocol is up	
Internet Address 172.16.3.1/30.Bres 0.Attached via Networ	-k Statement
Process ID 10 Pouter ID 1 1 1 1 Network Type POINT TO POI	
Trocess in it, Notcel in 1.1.1.1, Network Type Formino For	New Ware
Topology-MTID Cost Disabled Shutdown Topol	Verifying the Metric to the R2 LAN
U 04) no no r	verifying the metho to the rt2 Erit
Transmit Delay is I sec, State POINT TO POINT	
Timer intervals configured, Hello 10, Dead 40, Wait 40,	
oob-resync timeout 40	R1# show ip route include 172.16.2.0
Hello due in 00:00:01	0 172.16.2.0/24 [110/648] via 172.16.3.2, 00:06:03, Serial0/0/0
Supports Link-local Signaling (LLS)	R1#
Cisco NSF helper support enabled	R1# show ip route 172.16.2.0
IETF NSF helper support enabled	Routing entry for 172.16.2.0/24
Index 3/3, flood queue length 0	Known via "ospf 10", distance 110, metric 648, type intra area
Next 0x0(0)/0x0(0)	Last update from 172.16.3.2 on Serial0/0/0, 00:06:17 ago
Last flood scan length is 1, maximum is 1	Routing Descriptor Blocks:
Last flood scan time is 0 msec, maximum is 0 msec	* 172,16,3,2, from 2,2,2,2, 00:06:17 ago, via Serial0/0/0
Neighbor Count is 1, Adjacent neighbor count is 1	Route metric is 648, traffic share count is 1
Adjacent with neighbor 2.2.2.2	R11
Suppress hello for 0 neighbor(s)	n11
R14	VT 1

School of Industrial and System Engineering

OSPF COST

≣

DEFAULT INTERFACE BANDWIDTHS

On Cisco routers, the default bandwidth on most serial interfaces is set to 1.544 Mb/s.

Verifying the Default Bandwidth Settings of R1 Serial 0/0/0

R1# show interfaces serial 0/0/0 Serial0/0/0 is up, line protocol is up Hardware is WIC MBRD Serial Description: Link to R2 Internet address is 172.16.3.1/30 MTU 1500 bytes, BW 1544 Kbit/sec, DLY 20000 usec, reliability 255/255, txload 1/255, rxload 1/255 Encapsulation HDLC, loopback not set Keepalive set (10 sec) Last input 00:00:05, output 00:00:03, output hang never Last clearing of "show interface" counters never Input gueue: 0/75/0/0 (size/max/drops/flushes); Total

ADJUSTING THE INTERFACE BANDWIDTHS

Adjusting the R1 Serial 0/0/1 Interface

```
R1 (config) # int s0/0/1
R1 (config-if) # bandwidth 64
R1 (config-if) # end
R1#
*Mar 27 10:10:07.735: %SYS-5-CONFIG_I: Configured from console by c
R1#
R1# show interfaces serial 0/0/1 | include BW
MTU 1500 bytes, BW 64 Kbit/sec, DLY 20000 usec,
R1#
R1# show ip ospf interface serial 0/0/1 | include Cost:
    Process ID 10, Router ID 1.1.1.1, Network Type
    POINT_TO_POINT, Cost: 15625
R1#
```


School of Industrial and System Engineering

OSPF COST

Both the **bandwidth** interface command and the **ip ospf cost** interface command achieve the same result, which is to provide an accurate value for use by OSPF in determining the best route.

```
R1(config)# int s0/0/1
R1(config-if)# no bandwidth 64
R1(config-if)# ip ospf cost 15625
R1(config-if)# end
R1#
R1# show interface serial 0/0/1 | include BW
        MTU 1500 bytes, BW 1544 Kbit/sec, DLY 20000 usec,
R1#
R1# show ip ospf interface serial 0/0/1 | include Cost:
        Process ID 10, Router ID 1.1.1.1, Network Type POINT_TO_POINT,
        Cost: 15625
R1#
```


Verify that the router has formed an adjacency with its neighboring routers.

R1	# show	ip	ospf	neighbor			
Ne 3. 2. R1	ighbor 3.3.3 2.2.2 #	ID	Pri 0 0	State FULL/- FULL/-	Dead Time 00:00:37 00:00:30	Address 192.168.10.6 172.16.3.2	Interface Serial0/0/1 Serial0/0/0

School of Industrial and System Engineering

VERIFY OSPF

VERIFY OSPF PROTOCOL SETTINGS

Verifying R1's OSPF Neighbors

```
R1# show ip protocols
*** IP Routing is NSF aware ***
Routing Protocol is "ospf 10"
 Outgoing update filter list for all interfaces is not
  set
 Incoming update filter list for all interfaces is not
  set
  Router ID 1.1.1.1
 Number of areas in this router is 1. 1 normal 0 stub 0
 nssa
 Maximum path: 4
 Routing for Networks:
    172.16.1.0 0.0.0.255 area 0
    172.16.3.0 0.0.0.3 area 0
    192.168.10.4 0.0.0.3 area 0
 Routing Information Sources:
                                  Last Update
    Gateway
                    Distance
   2.2.2.2
                         110
                                 00:17:18
    3.3.3.3
                         110
                                  00:14:49
 Distance: (default is 110)
```

R1#

VERIFY OSPFPROCESS

Verifying R1's OSPF Process

R1# show ip ospf Routing Process "ospf 10" with ID 1.1.1.1 Start time: 01:37:15.156, Time elapsed: 01:32:57.776 Supports only single TOS(TOS0) routes Supports opaque LSA Supports Link-local Signaling (LLS) Supports area transit capability ≣ Supports NSSA (compatible with RFC 3101) Event-log enabled, Maximum number of events: 1000, Mode: cyclic Router is not originating router-LSAs with maximum metric Initial SPF schedule delay 5000 msecs Minimum hold time between two consecutive SPFs 10000 msecs Maximum wait time between two consecutive SPFs 10000 msecs Incremental-SPF disabled Minimum LSA interval 5 secs Minimum LSA arrival 1000 msecs LSA group pacing timer 240 secs Interface flood pacing timer 33 msecs Retransmission pacing timer 66 msecs Number of external LSA 0. Checksum Sum 0x000000 Number of opaque AS LSA 0. Checksum Sum 0x000000 Number of DCbitless external and opaque AS LSA 0 Number of DoNotAge external and opague AS LSA 0

School of Industrial and System Engineering

VERIFY OSPF

VERIFY OSPF INTERFACE SETTINGS

Verifying R1's OSPF Interfaces

R1# show ip ospf interface brief							
Interface	PID	Area	IP Address/Mask	Cost	State	Nbrs F/C	
Se0/0/1	10	0	192.168.10.5/30	15625	P2P	1/1	
Se0/0/0	10	0	172.16.3.1/30	647	P2P	1/1	
Gi0/0	10	0	172.16.1.1/24	1	DR	0/0	
R1#							

OSPFv2 and OSPFv3 Data Structures

SIMILARITIES BETWEEN OSPFV2 TO OSPFV3

OSPFv2 and OSPFv3				
Link-State	Yes			
Routing Algorithm	SPF			
Metric	Cost			
Areas	Supports the same two-level hierarchy			
Packet Types	Same Hello, DBD, LSR, LSU and LSAck packets			
Neighbor Discovery	Transitions through the same states using Hello packets			
DR and BDR	Function and election process is the same			
Router ID	32-bit router ID: determined by the same process in both protocols			

DIFFERENCES BETWEEN OSPFV2 TO OSPFV3

	OSPFv2	OSPFv3		
Advertises	IPv4 networks	IPv6 prefixes		
Source Address	IPv4 source address	IPv6 link-local address		
Destination Address	 Choice of: Neighbor IPv4 unicast address 224.0.0.5 all-OSPF-routers multicast address 224.0.0.6 DR/BDR multicast address 	 Choice of: Neighbor IPv6 link-local address FF02::5 all-OSPFv3-routers multicast address FF02::6 DR/BDR multicast address 		
Advertise Networks	Configured using the network router configuration command	Configured using the ipv6 ospf process-id area-id interface configuration command		
IP Unicast Routing	IPv4 unicast routing is enabled by default.	IPv6 unicast forwarding is not enabled by default. The ipv6 unicast-routing global configuration command must be configured.		
Authentication	Plain text and MD5	IPv6 authentication		

OSPFv3 Packet Destination

FF02::5 address is the all OSPF router address FF02::6 is the DR/BDR multicast address

OSPFV3 NETWORK TOPOLOGY

Configuring Global-Unicast Addresses on R1

```
R1 (config) # ipv6 unicast-routing
R1(config)#
R1(config) # interface GigabitEthernet 0/0
R1(config-if) # description R1 LAN
R1(config-if) # ipv6 address 2001:DB8:CAFE:1::1/64
R1(config-if) # no shut
R1(config-if)#
R1(config-if) # interface Serial0/0/0
R1(config-if) # description Link to R2
R1(config-if) # ipv6 address 2001:DB8:CAFE:A001::1/64
R1(config-if) # clock rate 128000
R1(config-if) # no shut
R1(config-if)#
R1(config-if) # interface Serial0/0/1
R1(config-if) # description Link to R3
R1(config-if) # ipv6 address 2001:DB8:CAFE:A003::1/64
R1(config-if) # no shut
R1(config-if) # end
R1#
```


CONFIGURING OSFPV3 OSPFV3 NETWORK TOPOLOGY (CONT.) Steps to Configure OSPFv3

Step 1: Enable IPv6 unicast routing: ipv6 unicast-routing.

Step 2: (Optional) Configure link-local addresses.

Step 3: Configure a 32-bit router ID in OSPFv3 router configuration mode using the router-id rid command.

Step 4: Configure optional routing specifics such as adjusting the reference bandwidth.

Step 5: (Optional) Configure OSPFv3 interface specific settings. For example, adjust the interface bandwidth.

Step 6: Enable IPv6 routing by using the ipv6 ospf area command.

[up/up]

[up/up]

 Link-local addresses are automatically created when an IPv6 global address is assigned to the interface (required). 	unicast

unassigned

FE80::32F7:DFF:FEA3:DA0 2001:DB8:CAFE:A001::1

FE80::32F7:DFF:FEA3:DA0 2001:DB8:CAFE:A003::1

Serial0/0/0

Serial0/0/1

R1#

- Global unicast addresses are not required.
- Cisco routers create the link-local address using FE80::/10 prefix and the EUI-64 process unless the router is configured manually,
- EUI-64 involves using the 48-bit Ethernet MAC address, inserting FFFE in the middle and flipping the seventh bit. For serial interfaces, Cisco uses the MAC address of an Ethernet interface.
- Notice in the figure that all three interfaces are using the same link-local address.

ASSIGNING LINK-LOCAL ADDRESSES

```
R1(config) # interface GigabitEthernet 0/0
R1(config-if) # ipv6 address fe80::1 link-local
R1(config-if) # exit
R1(config) # interface Serial0/0/0
R1(config-if) # ipv6 address fe80::1 link-local
R1(config-if) # exit
R1(config) # interface Serial0/0/1
R1(config-if) # ipv6 address fe80::1 link-local
R1(config-if)#
```

Manually configuring the linklocal address provides the ability to create an address that is recognizable and easier to remember.

School of Industrial and System Engineering

R1# show ipv6 interfac	e brief
Em0/0	[administratively down/down]
unassigned	
GigabitEthernet0/0	[up/up]
FE80::1	
2001:DB8:CAFE:1::1	
GigabitEthernet0/1 unassigned	[administratively down/down]
Serial0/0/0	[up/up]
FE80::1	
2001:DB8:CAFE:A001	::1
Serial0/0/1	[up/up]
FE80::1	
2001:DB8:CAFE:A003	1::1
R1#	
L	

CONFIGURING THE OSPFV3 ROUTER ID

CONFIGURING THE OSPFV3 ROUTER ID (CONT.)

Assigning a Router ID to R1

```
R1(config) # ipv6 router ospf 10
R1(config-rtr)#
*Mar 29 11:21:53.739: %OSPFv3-4-NORTRID: Process OSPFv3-1-
IPv6 could not pick a router-id, please configure manually
R1(config-rtr)#
R1(config-rtr) # router-id 1.1.1.1
R1(config-rtr)#
R1(config-rtr) # auto-cost reference-bandwidth 1000
% OSPFv3-1-IPv6: Reference bandwidth is changed. Please
ensure reference bandwidth is consistent across all routers.
R1(config-rtr)#
R1(config-rtr)# end
R1#
R1# show ipv6 protocols
IPv6 Routing Protocol is "connected"
IPv6 Routing Protocol is "ND"
IPv6 Routing Protocol is "ospf 10"
  Router ID 1.1.1.1
 Number of areas: 0 normal, 0 stub, 0 nssa
  Redistribution:
    None
R1#
```


MODIFYING AN OSPFV3 ROUTER ID

R1(config)# ipv6 router ospf 10
R1(config-rtr)# router-id 1.1.1.1
R1(config-rtr)# end
R1#

```
R1# clear ipv6 ospf process
Reset selected OSPFv3 processes? [no]: y
R1#
R1# show ipv6 protocols
IPv6 Routing Protocol is "connected"
IPv6 Routing Protocol is "ND"
IPv6 Routing Protocol is "ospf 10"
Router ID 1.1.1.1
Number of areas: 0 normal, 0 stub, 0 nssa
Redistribution:
None
R1#
```

ENABLING OSPFV3 ON INTERFACES

Instead of using the **network** router configuration mode command to specify matching interface addresses, OSPFv3 is configured directly on the interface.

R1(config)	# inte	rface Gig	gabitEther	net 0/0			
R1(config-	if) # i	pv6 ospf	10 area 0				
R1(config-	if)#						
R1(config-	if) # i	nterface	Serial0/0	/0			
R1(config-	if) # i	pv6 ospf	10 area 0				
R1(config-	if)#						
R1(config-	if) # i	nterface	Serial0/0	/1			
R1(config-	if) # i	pv6 ospf	10 area 0				
R1(config-	if)#						
R1(config-	if) # e	nd					
R1#							
R1# show ig	pv6 os	pf interf	faces brie	f			
Interface	PID	Area	Intf ID	Cost	State	Nbrs	F/C
Se0/0/1	10	0	7	15625	P2P	0/0	
Se0/0/0	10	0	6	647	P2P	0/0	
Gi0/0	10	0	3	1	WAIT	0/0	
R1#							

VERIFY OSPFV3 NEIGHBORS/PROTOCOL SETTINGS

```
R1# show ipv6 ospf neighbor
OSPFv3 Router with ID (1.1.1.1) (Process ID 10)
Neighbor ID Pri State Dead Time Interface ID Interface
3.3.3.3 0 FULL/ - 00:00:39 6 Serial0/0/1
2.2.2.2 0 FULL/ - 00:00:36 6 Serial0/0/0
R1#
```

```
R1# show ipv6 protocols
IPv6 Routing Protocol is "connected"
IPv6 Routing Protocol is "ND"
IPv6 Routing Protocol is "ospf 10"
Router ID 1.1.1.1
Number of areas: 1 normal, 0 stub, 0 nssa
Interfaces (Area 0):
Serial0/0/1
Serial0/0/0
GigabitEthernet0/0
Redistribution:
None
R1#
```


School of Industrial and System Engineering VERIFY OSPFV3 VERIFY OSPFV3 INTERFACES

90 2

R1 # show i ;	pv6 ospf	interface brief					
Interface	PID	Area	Intf ID	Cost	State	Nbrs H	F/C
Se0/0/1	10	0	7	15625	P2P	1/1	
Se0/0/0	10	0	6	647	P2P	1/1	
Gi0/0	10	0	3	1	DR	0/0	
R1#							


```
R1# show ipv6 route ospf
IPv6 Routing Table - default - 10 entries
Codes: C - Connected, L - Local, S - Static, U - Per-user
Static route
       B - BGP, R - RIP, H - NHRP, I1 - ISIS L1
       I2 - ISIS L2, IA - ISIS interarea, IS - ISIS
summary, D - EIGRP
       EX - EIGRP external, ND - ND Default, NDp - ND
Prefix, DCE - Destination
       NDr - Redirect, O - OSPF Intra, OI - OSPF Inter,
OE1 - OSPF ext 1
       OE2 - OSPF ext 2, ON1 - OSPF NSSA ext 1, ON2 - OSPF
NSSA ext 2
  2001:DB8:CAFE:2::/64 [110/657]
\Omega -
     via FE80::2, Serial0/0/0
  2001:DB8:CAFE:3::/64 [110/1304]
\Omega =
    via FE80::2, Serial0/0/0
0 2001:DB8:CAFE:A002::/64 [110/1294]
     via FE80:::2, Serial0/0/0
R1#
```

CHAPTER 8: SUM ARY

- For IPv4 is OSPFv2
- For IPv6 is OSPFv3
- Classless, link-state routing protocol with a default administrative distance of 110, and is denoted in the routing table with a route source code of O
- OSPFv2 is enabled with the **router ospf** process-id global configuration mode command. The process-id value is locally significant, which means that it does not need to match other OSPF routers to establish adjacencies with those neighbors.
- **Network** command uses the wildcard-mask value which is the inverse of the subnet mask, and the area-id value

CHAPTER 8: SUMMARY (CONT.)

- By default, OSPF Hello packets are sent every 10 seconds on multiaccess and point-to-point segments and every 30 seconds on NBMA segments (Frame Relay, X.25, ATM), and are used by OSPF to establish neighbor adjacencies. The Dead interval is four times the Hello interval, by default.
- For routers to become adjacent, their Hello interval, Dead interval, network types, and subnet masks must match. Use the **show ip ospf neighbors**command to verify OSPF adjacencies.
- In a multiaccess network, OSPF elects a DR to act as collection and distribution point for LSAs sent and received. A BDR is elected to assume the role of the DR should the DR fail. All other routers are known as DROTHERs. All routers send their LSAs to the DR, which then floods the LSA to all other routers in the multiaccess network.

CHAPTER 8: SUMMARY (CONT.)

- In multiaccess networks, the router with the highest router ID is the DR, and the router with the second highest router ID is the BDR. This can be superseded by the **ip ospf** priority command on that interface. The router with the highest priority value is the DR, and next-highest the BDR.
- The **show ip protocols** command is used to verify important OSPF configuration information, including the OSPF process ID, the router ID, and the networks the router is advertising.
- OSPFv3 is enabled on an interface and not under router configuration mode. OSPFv3 needs link-local addresses to be configured. IPv6 Unicast routing must be enabled for OSPFv3. A 32-bit router-ID is required before an interface can be enabled for OSPFv3.

CHAPTER 8: SUMMARY (CONT.)

- The **show ip protocols** command is used to verify important OSPFv2 configuration information, including the OSPF process ID, the router ID, and the networks the router is advertising.
- OSPFv3
 - Enabled on an interface and not under router configuration mode
 - Needs link-local addresses to be configured. IPv6
 - Unicast routing must be enabled for OSPFv3
 - 32-bit router-ID is required before an interface can be enabled for OSPFv3
 - show ipv6 protocols command is a quick way to verify configuration information (OSPF process ID, the router ID, and the interfaces enabled for OSPFv3)

TERIMA KASIH

Thank you very much for your kind attention